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ABSTRACT: A multinational collaborative team led by the U.S. Pharmacopeial Convention is currently investigating the
potential of near-infrared (NIR) spectroscopy for nontargeted detection of adulterants in skim and nonfat dry milk powder. The
development of a compendial method is challenged by the range of authentic or nonadulterated milk powders available
worldwide. This paper investigates the sources of variance in 41 authentic bovine skim and nonfat milk powders as detected by
NIR diffuse reflectance spectroscopy and chemometrics. Exploratory analysis by principal component analysis and varimax factor
rotation revealed significant variance in authentic samples and highlighted outliers from a single manufacturer. Spectral
preprocessing and outlier removal methods reduced ambient and measurement sources of variance, most likely linked to changes
in moisture together with sampling, preparation, and presentation factors. Results indicate that significant chemical variance exists
in different skim and nonfat milk powders that will likely affect the performance of adulterant detection methods by NIR
spectroscopy.
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■ INTRODUCTION

Skim milk powder (SMP) and nonfat dry milk (NFDM) are
important food ingredients and sources of nutrition, with more
than 9 billion pounds estimated to be produced globally in
2011.1 Numerous testing standards exist for both of these
ingredients and other milk derivatives, but no authoritative
testing standards currently exist for verifying the identities and
integrities of these ingredients. This was underscored by the
tragic 2008 melamine adulteration incident involving milk
powders, which highlighted vulnerabilities in existing food
safety and quality assurance systems that were not capable of
guarding against the possibility of unknown adulterants.2−4

A workshop on this topic was convened by the United States
Pharmacopeia (USP) in 2009 entitled “Food Protein Work-
shopDeveloping a Toolbox of Analytical Solutions to
Address Adulteration.”5 One of the key outcomes from the
meeting was a need for standardized and reliable nontargeted
screening procedures combined with multivariate statistical
analysis tools to assess food ingredients rich in protein, such as
milk and plant protein-derived ingredients, in quality assurance
(QA) and quality control (QC) settings. Such procedures

would become useful tools to allow authentication of
ingredients based on a qualitative comparison with a library
of milk powders, with the expectation that adulterated samples
would classify as outliers and as such be considered
nonauthentic. This nontargeted approach has the potential to
significantly advance a solution to the age-old problem of using
targeted methods to detect adulterationas those responsible
for adulteration are constantly evolving and engineering new,
previously unknown adulterants to circumvent existing targeted
QC methods.
Several promising analytical methods, including near-infrared

(NIR) spectroscopy, are currently being investigated by a USP-
led collaborative research project aimed at developing and
validating a toolbox of methods to detect adulteration in SMP
and NFDM.6 Benefits of NIR spectroscopy compared to other
technologies include its ready availability, low cost, high
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throughput, and robust and rapid analytical measurements.
However, developing these nontargeted classification methods
is complicated by the potential physicochemical variability of
pure, nonadulterated milk powder ingredients in commerce
worldwide. Such variations are well-known to broaden the
range and classification boundaries of authentic ingredients,
thereby decreasing the method’s sensitivity for detecting lower
concentration adulterants. This problem is especially true with
NIR diffuse reflectance spectroscopy, which already exhibits
typical detection limits on the order of 0.1%, where physical
properties influence the resulting spectra and chemical
signatures are not well-resolved.

The basic compositional variability of SMP and NFDM (e.g.,
total protein, lactose, water, fat, and ash) is thought to be
somewhat limited by the standardization of raw milk used to
produce these powders and international standardization efforts
for product compositions. Little is known, however, of the
variability of minor chemical constituents, such as milk
metabolites, small-molecule additives, and protein composition
in commercial SMP and NFDM, and their influence on NIR
spectra. For raw fluid milk, factors reported to influence these
minor constituents include raw milk geographic origin, animal
origin (e.g., bovine versus water buffalo) and breed, season, and
animal diet.7 For further processed ingredients like milk
powders, processing parameters such as preheating temper-

Table 1. Certificates of Analysis Data from 41 Milk Powder Samples Acquired from Eight Suppliers, Produced between August
2008 and May 2012

particle sizea (μm) production content (%)

sample d(0.1) d(0.5) d(0.9) supplier classb process typec location country date moisture fat protein

S021 9.6 36.6 86.8 A NFDM LH A-1 USA 7/12/2010 3.6 0.65 35.67
S022 15.7 60.7 133.4 A SMP A-1 USA 2/27/2010 3.8 0.4 33.71
S023 16.2 51.2 112 A NFDM MH A-1 USA 5/5/2010 3.3 0.67 35.4
S024 7.3 32.6 87.7 A NFDM MH A-1 USA 5/5/2010 3.1 0.66 35.56
S030 14.5 42.2 86.2 A NFDM HH A-2 USA 7/18/2010 3.87 1.05
S031 A NFDM HH A-2 USA 11/16/2009 3.49 0.69
S032 A NFDM LH A-2 USA 6/19/2010 3.92 0.99
S033 11.1 36.6 77.2 A NFDM LH A-2 USA 2/26/2010 3.71 0.95
S047 10.7 40.2 92.8 A NFDM LH A-1 USA 6/7/2010 3.68 0.59 35.5
S051 13.2 45.9 105.6 A NFDM LH A-1 USA
S053 18.2 54.6 124 A NFDM LH A-1 USA
S054 16.7 68.1 152.8 A NFDM LH A-1 USA
S055 17.6 54.9 124.1 A NFDM LH A-1 USA 8/26/2008 3.63 0.83 35.69
S061 16.4 57.8 124.9 H NFDM LH H-1 USA 3/8/2011 3.4 0.54
S068 17.2 58.6 124.7 H NFDM LH H-1 USA 2/21/2011 3.46 0.573
S070 15.5 57.2 122 H NFDM LH H-1 USA 2/7/2011 3.294 0.62
S076 13.2 43.5 94.4 A NFDM HH A-2 USA 1/14/2011 3.5 0.61
S077 20.5 65.5 139.5 A SMP LH A-1 USA 2/21/2011 4 0.58 33.4
S080 11.5 42.6 110.8 B SMP LH B-1 USA 3/27/2011 4 0.65 34.29
S081d 21.5 69.4 196.9 B NFDM HH B-2 USA 3/9/2011 3.17 0.75 35.44
S082d 29.8 123.8 432.9 B NFDM LH B-2 USA 2/27/2011 3.59 0.66 36.09
S084 10.6 37.3 89.2 B SMP MH B-1 USA 1/30/2011 3.66 0.6 34.06
S085 11.1 40.5 99 B SMP MH B-1 USA 3/8/2011 3.85 0.69 34.22
S086d 23.6 80.9 245.8 B NFDM HH B-2 USA 1/15/2011 3.58 0.7 35.64
S087d 19.8 77.9 193.2 B NFDM LH B-2 USA 3/7/2011 3.29 0.62 35.84
S089 15.3 53.2 143.6 B NFDM MH B-3 USA 3/12/2011 3.6 0.78 35.73
S091d 16 68 231.4 B NFDM MH B-3 USA 12/26/2010 3.78 0.95 36.31
S093 20.1 64.2 146.3 A NFDM LH A-1 USA 2/1/2011 3.8 0.76 36.04
S094 10.1 36.3 89.8 A NFDM MH A-1 USA 2/13/2011 3.8 0.77 35.9
S095 23.4 82.3 187.6 D SMP MH D-1 New Zealand 10/20/2010 3.9 1 32.7
S096d 17.3 57.8 125 B SMP MH B-4 USA 2/8/2011 3.96 0.67 34.12
S097 15.3 50.7 110.8 B SMP LH B-4 USA 3/12/2011 3.78 0.69 34.3
S098 13.7 41.6 89.9 B SMP LH B-4 USA 8/29/2010 3.92 0.75 34.4
S106 21.8 66 148.8 E SMP MH E-1 Ireland 8/17/2010 3.82 0.95 37
S107 22.8 65.3 135.1 E SMP MH E-1 Ireland 5/15/2010 4.49 0.95 35.7
S108 14.9 51.5 116.2 G NFDM
S110 12.7 37.6 77.3 G NFDM
S116 13.1 39 83.2 C SMP MH C-1 Denmark 4/2/2011 4 0.5
S117 15.2 39.7 89.8 C SMP MH C-1 Denmark 3/15/2011 4 0.07
S145 F NFDM LH F-1 USA 5/12/2012 1.8 0.01
S149 F NFDM HH F-1 USA 5/15/2012 2.37 0.02

ad(0.5), median diameter; d(0.9), 90% of volume distribution below the given diameter; d(0.1), 10% of volume distribution below the given
diameter. bNFDM, nonfat dry milk; SMP, skim milk powder. cLH, low heat; MH, medium heat; HH, high heat. dSamples characterized by HPSEC
and LC-UV.
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atures, concentrate heating temperatures, drying temperatures,
and drying equipment (e.g., spray versus drum driers), may also
introduce additional chemical and physical differences that are
measurable by NIR spectroscopy. This was confirmed by a
study that reported that heat treatment type (low, medium, or
high heat) could be discriminated by NIR spectroscopy and
chemometrics.8 More research is therefore needed to better
characterize the NIR variance of commercial SMP and NFDM
and determine how this variance may affect the performance of
nontargeted NIR analysis methods for detecting adulteration.
Understanding the repeatability and reproducibility of a NIR

measurement is an important consideration when developing
classification methods for detecting adulteration. Advanced
NIR platforms for solid-phase reflectance spectroscopy are
available and have been designed to reduce the effects of
instrumental variance. The use of standard materials to monitor
and verify instrumental calibration, like wavelength accuracy,
photometric linearity and accuracy, and noise, is also common
practice to ensure performance. However, extraneous features
can still be manifest in NIR spectra from other sources of
measurement variance, including ambient conditions and
sample presentation parameters. For example, ambient temper-
ature changes can have significant effects on NIR spectra for
materials involving hydrogen bonding or containing water. A
difference of a few degrees may result in significant spectral
changes such as peak intensities and absorbance shifts.
Hygroscopic materials are also sensitive to humidity, as the
NIR spectrum is known to have broad intense bands related to
water absorption. Presentation of the sample to the measure-
ment interface can also introduce variability. The material
particle size and diameter of the sample cup can alter the
scattering effects on the spectra, while the homogeneity and
measured surface area of the sample can also influence the
accuracy of the measurement.
In this study, variance of NIR spectra from 41 different

bovine skim milk powders and nonfat dry milk powders was
explored by use of principal component analysis and varimax
rotation methods. Experimental design was controlled in such a
way as to either reduce the influence of NIR measurement
variance or monitor well-known sources of variance. Resulting
spectral data were then interpreted for influential sources of
variance by use of principal component score trends and
spectral signatures in rotated principal component loadings.
Chemical analysis of samples of interest is also reported to
support the interpretations of the rotated principal compo-
nents.

■ MATERIALS AND METHODS
Milk Powder Samples. A total of 41 milk powders, including 19

skim milk and 22 nonfat dry milk, were acquired from eight suppliers
produced between August 2008 and May 2012. Certificates of analysis
indicated product origin details (including production sites and lot
numbers), and processing conditions (condensing temperatures
labeled as high, medium, and low heat). Proximate chemical
composition was also indicated on the certificates including levels of
moisture (%), fat (%), and protein (%). A detailed summary of all milk
powders studied and their supplied attributes and properties is
provided in Table 1.
NIR Spectral Measurement. Fourier transform (FT) near-

infrared spectra were acquired at the U.S. Food and Drug
Administration, Center for Food Safety and Applied Nutrition,
Division of Food Processing Science and Technology, with a
PerkinElmer Frontier FT-NIR system (Waltham, MA) fitted with
the NIRA reflectance accessory (diffuse reflectance). A 12 mm

diameter spot was illuminated on the sampling interface, while the
spinning cup feature of the reflectance accessory was enabled during
acquisition. Each resulting percent reflectance (% R) NIR spectrum
was an average of 32 scans at 4 cm−1 resolution, over a spectral range
between 1000 and 2500 nm (4000 and 10 000 cm−1).

Instrument performance was internally verified daily by vendor-
specific tests in transmittance (T) mode, including the “abscissa check”
(wavelength accuracy) and the “ordinate check” (photometric
response); both checks used an internal polystyrene standard for
comparison against spectra acquired at calibration. Photometric noise
was also verified daily to be within specification by use of the “noise
check”, which calculated root-mean-square noise (RMS, % T), peak-
to-peak noise (% T), and baseline trending over a specified range.

A background scan (99% Spectralon diffuse reflectance standard)
was acquired at the beginning of the experiment, per software
requirements, and all automatic prompts for additional background
scans were disabled for the remainder of the experiment. However,
extra reflectance standard measurements were incorporated into the
experimental design as independent samples. Spectra of a USP NIR
suitability reference standard (USP, catalog no. 1457844, lot no.
G0K264, Rockville, MD) and a 99% Spectralon diffuse reflectance
standard (Labsphere, catalog no. AS-01160-060, North Sutton, NH)
were acquired at specified intervals on each day of analysis. These
spectra were used to monitor the drift in wavelength accuracy and
correct for drift in photometric intensity, independent of the system’s
internal requirements. A tolerance for agreement for wavelength
accuracy per USP general chapter ⟨1119⟩9 is ±1 nm for peaks between
70 and 2000 nm and ±1.5 nm for peaks between 2000 and 2500 nm.
Four wavelength peaks were measured across the spectral range
(1261.1, 1536.2, 1971.2, and 2313.1 nm), and wavelength peak
maxima were determined via a center of gravity algorithm.10

Sample Analysis. NIR spectra of six subsamples for each milk
powder sample were acquired in a randomized order on three
consecutive days of analysis with two subsamples per milk powder
being acquired on each day of analysis. Stock samples were stored in
sealed glass jars and remixed by multiple inversions between
subsampling. For each milk powder subsample, a 1.0−1.5 cm thick
(about 25 g) portion was evenly distributed into a 100-mm dish
(PerkinElmer, catalog no. L1181257, Oakbrook, IL) by gently swirling,
taking care not to impact any surfaces, so as to not alter the natural
particle size distribution. The dish was placed on the sampling
interface of the reflectance accessory and covered for each measure-
ment. Since the same dish was used for each subsample, it was
thoroughly cleaned between measurements by pouring out the milk
powder and removing the excess particles with a vacuum and Kimwipe
tissue.

In addition, on each day of analysis, six replicate measurements were
acquired for randomly selected subsamples with the sample remaining
on the sampling interface between replicates. While variance
contributions from subsampling and instrumental repeatability are
expected to be relatively small in comparison to the variance associated
with the chemical and physical differences between samples, it is
nonetheless necessary to characterize these contributions. Reflectance
standards were acquired at intervals of every six milk powder
subsamples. Spectral acquisition included 246 unique subsample
spectra, 105 additional replicate spectra (not included in exploratory
principal component analysis described in the following section), and
84 reference standard spectra, for a total of 435 spectra.

Principal Component Analysis and Varimax Rotation.
Principal component analysis (PCA) was used to explore the variance
in the repeatability of the NIR measurement, milk powder subsamples,
and NIR spectra of the 41 commercial milk powder samples
(MATLAB 2012, The Mathworks Inc., Natick, MA, and PLS_toolbox
5.2, Eigenvector Research Inc., Wenatchee, WA). PCA is an
exploratory chemometrics method that aims to reduce the
dimensionality of data from a large number of original measurements
(e.g., 6000 variables in an NIR spectrum) to a small number of
principal components (typically, the first 3−5 components), with the
remaining, higher-order components typically reflecting measurement
noise. The reduction is calculated such that each principal component
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(PC) is orthogonal to its preceding component and explains the
largest percentage of the total variance in the remaining data set. For
example, the first PC accounts for the largest percentage of total
variance; the second PC explains the largest percentage of the
remaining variance, and so on. Principal components can be expressed
as a linear combination of the original spectral variables, where each
variable is weighted on the basis of its variance contribution for that
PC and can be plotted graphically as the variable loading plot.
Similarly, each sample can be projected onto each PC loading and can
be plotted by its score or projection onto the principal component.
Varimax rotation, an orthogonal rotation method, is used to rotate

the principal components so that groups of variables will load onto a
single rotated component instead of being distributed across several

principal components. The rotated component is referred to as a factor
and may correspond to a factor in the experimental design or property
of the data; this may aid the spectral interpretation to chemical or
physical sources of variance.11 The interpretation is simplified because,
after a varimax rotation, original variables that contribute variance in
multiple relevant (or retained) PCs tend to be expressed in a single
rotated component. Generally, the varimax solution means that each
component has a small number of heavily weighted spectral variables
and a large number of insignificant spectral variables.

Exploratory Chemical Analysis. Six of the aforementioned milk
powders (highlighted in Table 1) were selected for further
characterization and chemical analysis by high-pressure size-exclusion
chromatography (HPSEC) for estimation of denatured protein. The

Figure 1. Principal component analysis of 99% reflectance standard acquired on three consecutive days of analysis (N = 42). Scores plots of (a) PC
1, (b) PC2, and (c) PC3 and their respective loadings plots (in panels d−f) are shown.
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HPSEC method utilized a Shodex protein column KW-803 (8 × 300
mm, maintained at 25 °C), with a mobile phase of 0.05 M NaH2PO4
and 0.15 M NaCl at pH 7.0 (flow rate = 0.3 mL/min). Separated
analytes were detected at 214 nm with a total run time of 75 min.
Samples were also analyzed for levels of ε-N-(furoylmethyl}-L-lysine
(furosine), as an early-stage marker for Maillard browning, by liquid
chromatography (LC-UV)12 following acid hydrolysis.

■ RESULTS AND DISCUSSION
Wavelength Accuracy. Spectral peak positions of the USP

NIR system suitability standard were determined by use of a
custom-written center of gravity script in MATLAB. Deviations
from the expected wavelength positions of 1261.1, 1536.2,
1971.2, and 2313.1 nm, as provided by the USP system
suitability standard certificate at a bandwidth of ±2 nm, were
calculated. All peaks were demonstrated to be within tolerance
of ±1 nm for peaks below 2000 nm and ±1.5 nm for peaks
above 2000 nm, and no distinct trends between days of analysis
were observed.
Photometric Intensity. Deviations in spectral profiles of

the 99% reflectance standard were observed over the
consecutive days of analysis. Trends of this spectral variance
were explored by PCA, where the data were mean-centered
prior to analysis. Figure 1a−c contains reflectance standard
scores for PCs 1−3 plotted against their sequential acquisition
in time. Respective loading plots of these PCs (Figure 1d−f)
explain 99.7% of the spectral variance and demonstrate
contributions from a sloping baseline and broad spectral
features centered at ∼1400 and ∼1930 nm. While the cause of
the baseline slope is uncertain, the latter features are typical of
ambient moisture, which has known absorbance bands in those
regions. Principal components 4 and 5, which accounted for
less than 0.3% of the total variance, possessed some features
between 2200 and 2400 nm (data not shown). These
absorbance features can be attributed to artifacts present on
the standard or sampling interfaces and were only observed for
three of the 99% reflectance standard measurements acquired
on day 1.
Reflectance standard measurements are typically used in

calculating double-beam “pseudo-absorbance” spectra and are
intended to correct for instrumental drift and ambient variance
contributions in sample spectra. PCA of single-beam milk
powder spectra (N = 351, %R mean-centered spectra) showed
clear moisture band contributions in PC5−PC7 loading plots
(i.e., greater than 0.1% variance), similar to those observed in
the reference standard. Baseline sloping effects were also
observed in three of the four first principal components
calculated from this data set. As a result, milk powder
absorbance spectra (A) were calculated by use of eq 1, where
the reflectance standard spectrum (RRS) used for the correction
was that which was acquired just prior to the reflectance milk
powder spectrum (Rmilk).

= −
⎛
⎝⎜

⎞
⎠⎟A

R
R

log10
milk

RS (1)

While the relationship between absorbance and diffuse
reflectance is not accurately defined by eq 1 (for reasons not
discussed in this report),9,13 for the purposes of this application,
the estimate or “pseudo-absorbance” will be considered
sufficient. After this conversion, principal component con-
tributions of ambient moisture bands and sloping baselines
were no longer observed in any of the first seven PCs of the
milk powder absorbance spectra.

Note, subsample measurements (N = 18) that were
corrected with the three outlier 99% reflectance standard
spectra (as described previously) had also exhibited extraneous
features between 2200 and 2400 nm, which were not present
before the double-beam absorbance calculation. These resulting
subsample absorbance spectra were removed from all
subsequent data analyses.

Milk Powder Variance by Chemometrics. Preprocess-
ing. Resulting “pseudoabsorbance” spectra (6001 variables/
spectrum) were further corrected by use of standard
preprocessing algorithms applied to NIR spectral data,
including standard normal variate (SNV) correction and first-
derivative transformation with a Savitzky−Golay algorithm
(window size = 35 points, third-order polynomial fit). End
points of all spectra were subsequently removed from the
spectral data set (20 points from both higher and lower
wavelength ends). Preprocessing methods employed are used
to correct for any potential physical phenomena or
interferences that result in unwanted signal variability that
may not be corrected by instrument calibration methods. For
example, diffuse reflectance spectra of powdered samples often
contain effects due to light scatter from particles within the
sample; these effects are manifest as a multiplicative
interference across the NIR spectrum. The magnitude of the
multiplicative scatter is a function of particle size and its
distribution. Typical preprocessing techniques used to correct
this include multiplicative scatter correction (MSC) or SNV
transformation. SNV generally provides the same results as the
more commonly used MSC method, without the need for a
reference spectrum. For each spectrum, the mean value of all
variables (e.g., absorbance values) is subtracted from each
variable. Each mean-subtracted variable is then divided by the
standard deviation of all variables for that spectrum.
Particle size can also influence the spectral path length (or

light beam penetration) as a result of variations in sample
packing, bulk density, and sample thickness; this is manifested
as a constant background in the NIR spectrum. Derivatives are
often used to reduce this effect, where the background of first-
derivative spectra is converted to a constant level, correcting
constant baseline offsets. The additional benefit of derivative
preprocessing is its ability to emphasize small shoulders and
peaks so that the resulting spectra have more pronounced
features. These attributes may be useful when targeting small
changes in intensity. Savitzky−Golay convolutions are often
used to calculate derivative spectra,14 where at each variable in a
spectrum, a polynomial of specified order is fit to the number of
points (window) surrounding the variable. An estimate for the
value of that variable is calculated from the derivative of the
fitted function. The algorithm moves to the next point along
the spectrum and performs the same calculation with the same
window size and polynomial order. Since fewer data points are
fitted near the end-points of a spectrum, the approximation of
the polynomial fit and subsequent derivative can introduce
unusual features in this region, and are often removed from the
spectral data set. However, the challenge of applying a
derivative is the interpretation of the resulting spectrum,
because peaks and features are no longer visually intuitive. It is
helpful to remember that first-derivative spectra have peaks at
regions of maximum slope in the original spectrum and cross
the zero line at locations of peak maxima/minima in the
original spectrum.
The additional advantage of using these preprocessing

methods is that both SNV and first-derivative transformation
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were shown to be effective in removing variability introduced
between replicate and subsample measurements of the same
milk powder material (as evaluated by PCA), indicating that the
major source of variance between replicate measurements is
from light-scattering and path-length effects, while minor
sources were attributed to random noise contributions. The
NIR spectra are also mean-centered so that absolute
magnitudes are not considered in a multivariate analysis but
only relative changes to the mean. This preprocessing step is
often used prior to PCA.
PCA and Varimax Rotation. Principal component analysis

was applied to the 228 preprocessed milk powder spectra from
41 unique milk powder samples with either five or six
subsamples each (18 subsamples had been previously removed
from the data set; see description under Photometric Intensity).
Score plots were explored for unique clustering patterns for
various classification categories, including day of analysis, SMP
versus NFDM, supplier, and condensing temperatures (high,
medium, and low heat). No clear trends were observed in many
of these categories, except for the resolved clustering of
particular samples: S081, S082, S086, and S145 along PC 1 and
S116 along PC 2 (Figure 2). Interestingly, samples S081, S082,
and S086 were manufactured by the same supplier, while S145
exhibited a lower moisture content than the majority of the
milk powder samples (mean ± std = 3.61% ± 0.47%, S0145 =
1.80%). An additional cluster of samples, S033, S051, S053,
S055, and S107, was observed in covariance of PC1 and PC2;
however, no single sample property could be attributed to this
cluster, even though the majority of these samples were low
heat processed samples.
Five principal components were retained from the PCA,

capturing 60.60% of the total variance, and were rotated with
the varimax factor rotation algorithm (Figure 3a−e).

Interpretations of the rotated components revealed features
related to chemical sources of variance, including water and R−
OH combination band contributions for PC 1 (1450, 1940
nm), a distinguishing lactose spectrum for PC 2, other sugar
contributions for PC 3, lipids (fats) and protein contributions
for PC 4, and additional C−H combination band contributions
in PC 5.15−18 Few signal contributions from below 1400 nm
were observed in these principal components, demonstrating
the limited sensitivity in the third overtone region of the NIR
spectrum. While some contributions were observed at ∼1400
nm, these small features can generally be attributed to moisture.
On the basis of these interpretations, principal component

analysis of targeted spectral regions on the spectral data set
(228 spectra) was performed to confirm the chemical sources
of variance for the resolved samples in Figure 2. Score and
loading plots (Figure 4a−c) from PCA of the NIR spectra
between 2200 and 2500 nm, the C−H combination band
region, demonstrated significant discrimination of supplier B
samples S081, S082, S086, and even S087, based on the
covariance structure of PC 1 and PC 2 (not varimax-rotated).
Absorbance bands in this region are most likely correlated to
lactose, fat, and protein content and are typically used for
quantitative determination of these constituents. Score and
loading plots from PCA of NIR spectra between 1700 and 2200
nm resolved similar sample clusters as observed for the full
spectral window, again emphasizing the major contributions of
both moisture (∼1930 nm) and R−OH (∼2000 nm)
combination bands in discriminating the same samples, S081,
S082, and S086. The spectral band for R−OH stretch (2000
nm) is most likely associated with functional groups in sugars
(lactose, etc.) and may also suggest that the source of variance
in the spectral bands above 2200 nm is also correlated to this

Figure 2. Score plot of PC1 versus PC2 from PCA of NIR spectra of 41 varying milk powders from eight different suppliers (A−H) and their
subsample measurements (total = 228 spectra). Spectra were preprocessed by use of standard normal variate (SNV) correction and first-derivative
transformation using a Savitzky−Golay algorithm (window size = 35 points, third-order polynomial fit).
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chemical source of variance, since similar milk powder samples
are discriminated in both regions.
Milk Powder Variance by Exploratory Chemical

Analysis. Milk powders S081, S082, S086, S087, S091, and
S096 were selected for further characterization by chemical
analysis; four of these were discriminated by PCA, while the
other two samples clustered near the center of the PCA space
(along the first five PCs). Basic compositional analysis showed
no difference between these samples for total protein (total
nitrogen content), total fat, total lactose, total ash, and total
sugars (data not shown). Additional chemical analysis for
aggregated protein and furosine levels (Table 2) suggested a
correlation with condensing temperature, where a direct
relationship was observed between the heat level and
aggregated protein, and between the heat level and furosine
concentration. Both correlations are theoretically expected
since an increase in condensing temperatures can cause changes
in the tertiary structure of milk proteins, leading to

denaturation and aggregation.19 The extent of the Maillard
reaction can also be catalyzed by heat and an increase in
furosine, a byproduct of this reaction, is expected.20 While these
results are expected, they do not support the clustering patterns
observed in the PCA space. Additional sources of variance are
thought to contribute to the separation of these samples, and
further characterization of these milk powders is required. One
possibility that should be explored is the presence at low levels
of chemical food additives that are authorized in international
standards for addition to milk powders.21 Exploring these and
other unknown sources of variance could be investigated by use
of targeted assays for specific chemical additives and multi-
variate approaches by Raman and NMR spectroscopy.
This study has demonstrated that appropriate experimental

design and spectral preprocessing can reduce the instrumental
and measurement sources of variance in NIR spectra of skim
and nonfat dry milk powders, thus providing the basis for a
robust compendial method for authentication. However,

Figure 3. Varimax rotated loading plots of (a) PC 1, (b) PC 2, (c) PC 3, (d) PC 4, and (e) PC 5, from PCA of NIR spectra of 41 varying milk
powders from eight different suppliers and their subsample measurements (total = 228 spectra). Spectra were preprocessed by use of standard
normal variate (SNV) correction and first-derivative transformation with a Savitzky−Golay algorithm (window size = 35 points, third-order
polynomial fit).
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defining boundary conditions for classifying authentic milk
powder is still challenged by the unknown chemical sources of
variance that discriminate between authentic milk powders. In
addition, the development of specifications is limited by the
number and source of authentic milk powders, as the 41
samples analyzed here do not necessarily represent the
population of commercially available milk powders in the

United States and other countries. Finally, the sensitivity in
detecting adulterants present in samples is still unknown;
potentially broad specifications may reduce the capability of
such methods to detect any low-level adulterants present in
skim and nonfat dry milk powder.
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Figure 4. PCA of NIR spectra between 2200 and 2500 nm of 41 varying milk powders from eight different suppliers (A−H) and their subsample
measurements (total = 228 spectra). Score plots of (a) PC 2 versus PC 1 and their loading plots for (b) PC 1 and (c) PC 2 are shown. Spectra were
preprocessed with standard normal variate (SNV) correction and first-derivative transformation by use of a Savitzky−Golay algorithm (window size
= 35 points, third-order polynomial fit).

Table 2. HPSEC Data for Approximation of Protein
Aggregation and LC−UV Data for Determination of
Furosine of Six Selected Samples from Table 1

sample
(process)a

aggregated protein (% of total
protein)

furosineb

(mg/100 g)

S081 (HH) 27 242
S082 (LH) 12 163
S086 (HH) 28 215
S087 (LH) 11 152
S091 (MH) 23 137
S096 (MH) 19 105

aLH, low heat; MH, medium heat; HH, high heat. bFurosine is an
early-stage marker for Maillard browning.
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■ ABBREVIATIONS

A, absorbance; FT, Fourier transform; HPSEC, high-pressure
size-exclusion chromatography; LC-UV, liquid chromatogra-
phy−ultraviolet (detection method); MSC, multiplicative
scatter correction; NFDM, nonfat dry milk; NIRA, near-
infrared reflectance accessory; NIR, near-infrared spectroscopy;
NMR, nuclear magnetic resonance; PCA, principal component
analysis; PC, principal component; QA, quality assurance; QC,
quality control; R, reflectance; RMS, root-mean-square; SMP,
skim milk powder; SNV, standard nominal variate; T,
transmittance; USP, U.S. Pharmacopeia
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